

Diagnosis and treatment of viral infections in patients with CKD

Jens Van Praet 17/03/2018

Introduction to viral infections oz sınt-jan

- Viral particles contain the viral genome and enzymes required for initial steps in replication
- Its structural components allow survival in the environment and binding to host cells
- By nature viruses can mutate very quickly

Classifications of viruses

- Classification systems:
 - Type and structure of nucleic acid
 - Symmetry of virus capsid
 - Presence of lipid envelope
 - With: respiratory, parenteral and sexual routes
 - Without: fecal-oral route

- From clinical point of view:
 - Transient viral infections
 - Persistent viral infections

Transient viral infections

- Exhibit 'hit and run' principle
 - Droplet contact: influenza, RSV, PIV, rhinovirus,...
 - Fecal-oral transmission: coxsackie A, hepatitis A,...
 - Indirect via vector: dengue, zika, chikungunya,...
- Only early therapeutic intervention (may) influence outcome
- Require fast diagnostic techniques

Persistent viral infections

- Integrate in host genome (e.g. HIV, HBV,...) or escape from host defense (e.g. HCV)
- Can cause acute or chronic disease, or enter a latency state
- During latency flares can occur
- Therapy aims suppression of the virus in case of chronic infection, or is initiated during acute infection or a flare
- Diagnostic techniques (ideally) should differentiate flare from latency

HBV infected hepatocyte

Diagnostic tools for viral infections: old stuff

• (Culture)

- Serology
 - 'Windows phase'

- IgM: false positivity and can persist for long period
- IgG avidity may provide additional information
- Immunoblot has increased specificity
- Antigen detection and combotest
 - Enhanced sensitivity as test becomes positive during viremia
 - Commercially available for influenza (sens. ~61%),
 RSV (sens. ~75%), dengue, CMV, HIV and HCV

Diagnostic tools for viral infections: new stuff

- Molecular tests
 - 'in-house'
 - PCR has optimal sensitivity
 - Semi-quantification by means of <u>rtPCR</u> (C_t value)
 - 'Multi-parameter' syndromic
 approach by testing a battery of viruses
 - Resistance testing by <u>sequencing</u>
- T-lymphocyte activation test
 - Allows the detection of CMV primed T-cells
 - Can identify patients post allo-HSCT at risk for CMV disease

rtPCR

rtPCR: real-time PCR, C_t: threshold value, HSCT: hematopoetic stemcell transplantation

Diagnostic testing: rtPCR

The micro-array Taqman® amplification card allows performing multiple monoplex rtPCR

1well = 1µl reaction volume = 1 Real Time PCR reaction

rtPCR testing: respiratory samples

- Respi TAC AZ Sint-Jan version 11 detects 35 pathogens
 - Rhinovirus (n=2), enterovirus (n=2), influenza A (n=6), influenza B, RSV-A, RSV-B, PIV (n=4), adenovirus (n=2), hMPV, coronavirus (n=4), parechovirus, boca, CMV, HSV-1/2
 - Streptococcus pneumoniae, Haemophilus influenzae.
 - Bordetella holmesii, Bordetella parapertussis, Bordetella pertussis, Bordetella bronchiseptica,
 Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophili, Coxiella
 Burnetii, Chlamydophila psittaci
 - Aspergillus fumigatus, Pneumocystis jirovercii
 - Controls: 18S, PDV control, Human Rnase Pgen
- Nasopharyngeal swabs detect upper airway infection or asymptomatic shedding
- BAL specimens or endotracheal aspirates are needed to exclude lower respiratory tract infection
- RSV, PIV, hMPV, adenovirus have clinical impact in adult population, especially in patients with risk factors

hMPV: clinical impact


```
<u>Orthomyxovirussen</u>
    Influenza A [BAL]
                                                Niet detecteerbaar.
   Influenza B [BAL]
                                                Niet detecteerbaar.
Adenovirussen
   Adenovirussen [BAL]
                                                Niet detecteerbaar.
<u>Paramyxovirussen</u>
   RSV - A [BAL]
                                                Niet detecteerbaar.
                                                Niet detecteerbaar.
   Humaan Metapneumovirus [BAL] Viraal RNA v
Extreem hoge virale lading: acute hMPV infectie!
                                                Viraal RNA werd gedetecteerd in het staal
   Parainfluenza Type 1 [BAL]
                                                Niet detecteerbaar.
    Parainfluenza Type 2
                                                Niet detecteerbaar.
   Parainfluenza Type 3 [BAL]
                                                Niet detecteerbaar.
   Parainfluenza Type 4 [BAL]
                                                Niet detecteerbaar.
    Bofvirus [BAL]
                                                Niet detecteerbaar.
   Mazelenvirus [BAL]
                                                Niet detecteerbaar.
<u>Picornavirussen</u>
    Rhinovirus [BAL]
                                                Niet detecteerbaar.
    Parechovirus [BAL]
                                                Niet detecteerbaar.
   Enterovirus [BAL]
                                                Niet detecteerbaar.
Coronavirussen
    Coronavirus NL63
                                                Niet detecteerbaar.
    Coronavirus OC43
                                                Niet detecteerbaar.
   Coronavirus 229E
                                                Niet detecteerbaar.
   Coronavirus HKU1
                                                Niet detecteerbaar.
<u>Parvovirussen</u>
   Bocavirus [BAL]
                                                Niet detecteerbaar.
<u>Herpesvirussen</u>
   CMV [BAL]
                                                Niet detecteerbaar.
Bacteriële DNA detectie
   Mycoplasma pneumoniae [BAL]
                                                Niet detecteerbaar.
   Legionella pneumophila [BAL]
                                                Niet detecteerbaar.
                                                Niet detecteerbaar.
   Bordetella pertussis [BAL]
    Bordetella parapertussis [BAL]
                                                Niet detecteerbaar.
   Chlamydophila pneumoniae [BAL]
                                                Niet detecteerbaar.
   Chlamydophila psittaci [BAL]
                                                Niet detecteerbaar
   Coxiella burnetii [BAL]
                                                Niet detecteerbaar.
```

H.J., 35-year old dialysis patient, unknown cause of ESRD, presenting with fever and respiratory failure

rtPCR testing: encephalitis and GI

Encephalitis:

- H. influenzae, N. meningitidis, S. pneumoniae, S. agalactiae, L. monocytogenes, F coli
- HSV-1, HSV-2, VZV, enterovirus, parechovirus, CMV, HHV-6
- Crytococcus gatti/neoformans

Gastro-intestinal:

- Norovirus (n=3), adenovirus (n=2), astrovirus, sapovirus (n=4), rotavirus, enterovirus, hepatitis E virus
- C. difficile, Campyiobacter sp., C. jejuni, C. coli, Salmonella sp., enteropathogenic E. coli, enteroaggregative E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterotoxinogenic E. coli, STEC and Y. enterocolitica.
- Giardia lamblia; Cryptosporidium sp.,
 Entamoeba sp., Strongyloides stercoralis,
 Dientamoeba fragilis, Blastocystis sp.,
 Ascaris lumbricoides, Microsporidium sp.
 and Schistosoma sp.

2 caveats:

- Limit of detection HSV is 1500 copies/ml in CSF (versus 150 in monoplex)
- CMV is not on the GI card

Diagnosis of CMV disease

- C_t values are converted to IU/ml by using a WHO standard
- rtPCR for CMV on stool is a good exclusion test for colitis
- Confirmation is needed by rtPCR on tissue is needed:
 - > 0,084 IU CMV/cell: indicative for CMV disease
 - > 0,006 IU CMV/cell: suspect for CMV disease
- BAL is required for diagnosis of CMV pneumonitis
 - Cutt-of not established (200-500 IU/ml versus 5500 IU/ml)
- Detection of viremia allows quantitative monitoring:
 - Cut-offs to differentiate disease from latency are less well established
 - Trends in viral loads over time may be more important in predicting disease

Viral resistance testing

Production of ~10¹¹ HIV viruses per day

- Available for adenovirus, HSV, VZV, CMV, HHV-6, HBV and HIV
- Phenotyping: determination of drug susceptibility profile by measuring EC₅₀ on viral cultures
- Genotyping: DNA sequencing of genes and correlation with genetic database
- Often different mutations or even quasi species are present (% of mutants can not be quantitated)

https://rega.kuleuven.be/regavir/tests Aids Reference Laboratories

Viral resistance testing: CMV

- Phenotypic: ganciclovir, cidofovir, foscarnet and adefovir
- Genotypic:
 - UL 97, protein kinase: ganciclovir
 - UL 54, DNA polymerase: ganciclovir, cidofovir and foscarnet

Parallel situation for HSV:

- UL 97 ≈ HSV thymidine kinase

- UL 54 ≈ HSV DNA polymerase

Drew, 2010 https://rega.kuleuven.be/regavir/tests

Molecular tests: wrap up of caveats

- Detection of a pathogen does not mean it causes the patients illness
 - Rhinovirus predisposes to S. pneumoniae infection
 - Influenza is associated with bacterial co-infection (S. aureus, S. pneumoniae and S. pyogenes) as well as invasive aspergillosis

Chertow, 2013

- Prolonged shedding after infection, especially in immunocompromised hosts
- Clinical validation of C_t values is needed to differentiate latency from disease
- Clinical meaning of many polymorphisms is unclear

Principles of antiviral treatment

Antiviral drugs

- Prophylactic or therapeutic
- Most target a specific viral enzyme
- Ribavirin has pleiotropic antiviral effects
- Plasma PK reflects less the cellular concentration because some drugs are activated and retained intracellularly

Neutralizing antibodies

- Prophylactic or therapeutic
- No hard evidence, trials ongoing (influenza, CMV...)
- CMV immunglobulines as adjunct therapy for CMV disease "remains at best controversial"
- Palivizumab effective in preventing RSV hospitalisation in infants and children at high risk for serious disease

Principles of antiviral treatment: transient infections

- Treatment especially mandatory in an immunocompromised host:
 - Adenovirus: ribavirin (spec. C), cidofovir or brincidofovir* post allo-HSCT
 - Hepatitis E: weight-based ribavirin PO
 - RSV: (ribavirin aerosols) > ribavirin PO or (IV) post allo-HSCT
 - PIV and hMPV: uncertain effect of ribavirin
- For boca virus, rhinovirus, coronavirus,... only 'supportive care' is available

Principles of antiviral treatment: influenza

- Oseltamivir is a neuraminidase inhibitor which interferes with the release of influenza from infected cells
- Treatment important for patients with underlying risk factors (e.g. CKD) and those with severe or progressive clinical illness
- Start treatment before laboratory confirmation

Uncomplicated

- Standard duration of treatment is 5 days
- Oseltamivir 75 mg 2 dd 1
- Most effective when administered within 48 hours

Complicated (pneumonia and clinical progression)

- Consider prolongation of treatment to 10 days and monitor for clearance weekly
- Consider oseltamivir 150 mg 2 dd 1
- Indicated in hospitalized patients even if duration of illness is more than 48 hrs:
 - Benefit for patient
 - Reduction of nosocomial transmission.

Principes of antiviral treatment: influenza in CKD

- Oseltamivir is mainly renally cleared (T_{1/2} 6-10 hrs)
- Common adverse events are nausea, vomiting and headache
- Dose adjustments according to the package insert:
 - CKD stage 3: 30 mg 2 dd 1 of 75 mg 1 dd 1
 - CKD stage 4: 30 mg 1 dd 1
- Dose adjustments according to guidelines based in 2 studies in CKD stage 5 (n=34):
 - (30 mg immediately, and then) 30 mg after HD session (low flux)
 - 75 mg after each HD session (high flux)
 - single dose of 75 mg (APD)/ single dose of 30 mg (CAPD)
 - CRRT high-flux dialysis: 30 mg dd or 75 mg every other day
- Given the variability of residual renal function and safety of osteltamivir: 'treat CKD stage 5 as stage 4' (JVP)
- Consider prophylaxis in dialysis unit (30 mg after dialysis)

Principes of antiviral treatment: persistent infections

- For HIV, HBV and HCV treatment dose adjustments or drugs with hepatic clearance should be considered by ID specialist or hepatologist
- Available treatments for herpesviridae in Belgium:
 - HSV and VZV: (val)acyclovir, foscarnet, cidofovir and brivudine (not active against HSV-2)
 - CMV: (val)gancyclovir, foscarnet and cidofovir
 - HHV-6: foscarnet
- Cidofovir also has activity against BK virus and papilloma viruses

Treatment of CMV and VZV: PK/PD

- Drug activity is dependent on AUC and can be considered as 'timedependent'
- All drugs have mainly renal clearance (>60%) and are eliminated by dialysis (>50%)
- The AUC of the valgancyclovir and valacyclovir is comparable to IV dosing

	C _{max} /C _{min} (IV, μg/ml)	C _{max} /C _{min} SS (PO, μg/ml)
Acyclovir	9,8 / 0,7 (5 mg/kg) 20,7 / 2,3 (10 mg/kg)	0,5 / 0,3 (200 mg) 1,3 (±1,5 hrs) / 0,8 (800 mg)
Valacyclovir	NA	5,2 (±2 hrs) / - (1 g)
Gancyclovir	10,4 / 0,6-1,2 (5 mg/kg)	
Valgancyclovir*	NA	*5,3-6,7 (± 3,5 hrs) / - (900 mg)
Foscarnet	450- 575 / 80-150□ (μM)	
Cidofovir	19,6 / -	

*AUC is higher when administered with food SS: steady state

Treatment of CMV and VZV: PK/PD

- All inhibit the DNA polymerase of HSV, VZV and/or CMV
 - Major toxicity is dependent on AUC

	<i>In vitro</i> EC ₅₀ (μg/ml, range/mean)	<i>In viv</i> o toxicity (μg/ml, C _{max} /C _{min})	Major toxicity
Acyclovir	0,02-1,9 / 0,2 (HSV-1)	>30-55 / >6	Neurologic*, renal
Acyclovir	0,3-2,9 / 0,7 (HSV-2)	>30-55 / >6	Neurologic*, renal
Acyclovir	0,8-5,2 / - (VZV)	>30-55 / >6	Neurologic*, renal
Ganciclovir	0,02-3,57 / - (CMV)	>14 / >2,8	Bone marrow
Cidofovir	0,2-0,9 / - (CMV)	NA	Renal
Foscanet	100-300 /- (CMV, μmol/L)	>1000/- (µmol/L)	Renal and electrolytes (act as chelator)

*A delay of 24 to 48 hours has been reported Gill and Burgess, 1990, Shepp *et al*, 1985

Treatment of VZV with acyclovir in renal failure

CrCl (ml/min/1,73 m ²)	IV		Oral (high dose)	
	Standard dose (%)	Dosing interval (h)	Dose (mg)	Dosing interval (h)
>50	100	8	800	4
25-50	100	12	800	4
10-25	100	24	800	8
<10	501,4	24	800 ^{2,3}	12

¹For HD patients: 60-100% after dialysis

²For HD patients: 200 mg 2 dd 1, and 400 mg after dialysis (predicted mean SS

conc. $1,35 \mu g/ml$)

³CAPD: 600-800 mg dd (predicted mean SS conc 0,9-1,8 μg/ml)

⁴CRRT: '5-7,5 mg/kg q24 h' (predicted mean SS conc 1,35 μg/ml)

HD ref

Laskin *et al*, 1982 (n=6)

Almond *et al*, 1995 (n=7)

PD ref

Burgess and Gill, 1990 (n=4)

Stathoulopoulou et al, 1996 (n=10)

CRRT ref

Boulieu R *et al*, 1997 (n=3)

Bleyzac N et al, 1999 (n=1)

Khajehdehi P et al, 2000 (n=1)

Treatment of VZV with valacyclovir in renal failure

CrCl (ml/min/1,73 m2)	Dose
>50	1g every 8 hrs
25-50	1 g every 12 hrs
10-25	1 g every 24 hrs
<10	*500 mg every 24 hrs

^{*}One study in PD patients (n=12) found 500 mg 2 dd lead to steadystate concentrations overpassing the therapeutic range in all patients, without apparent toxicity

Treatment with (val)gancyclovir in renal failure oostende av

CrCl	IV		
(ml/mi n)	Standard dose (mg/kg)	Dosing interval (h)	
>70	5	12	
50-69	2,5	12	
25-49	2,5	24	
10-24	1,25	24	
<10	1,25 ^{1,2}	After dialysis	

CrCl	PO		
(ml/min)	Standard dose (mg/kg)	Dosing interval (h)	
>60	900	12	
40-59	450	12	
25-39	450	48	
10-24	450	twice a week	
<10	NR	NR	
HD	NR	NR	

CAPD: no data

 $^1 HD$: peak plasma level of 3,7 mg/ml, with a SS level of 2,6 mg/ml $^2 CRRT$ (CVVHDF): 2,5 mg/kg/d (AUC > 50 mg·h/l and trough concentration of > 2 mg/l)

HD ref Combarnous *et al*, 1994 (n=1) CRRT ref
Horvatits et al, 2014 (n=9)

Antiviral treatment in CKD: a case for TDM?

- Residual renal function and effect of dialysis technique are often unpredictable
- TDM of IV administration
 - Peak at the end of 1-hr infusion, trough before next administration

s ACYV GCV

- Steady-state concentration for continuous infusion*
- TDM of PO administration
- Use PK indices from patients with normal renal function?

	C _{max} /C _{min} (IV, μg/ml)	C _{max} /C _{min} SS (PO, μg/ml)
Acyclovir	9,8 / 0,7 (5 mg/kg) 20,7 / 2,3 (10 mg/kg)	0,5 / 0,3 (200 mg) 1,3 (±1,5 hrs) / 0,8 (800 mg)
Valacyclovir	NA	5,2 (±2 hrs) / - (1 g)
Gancyclovir	10,4-13,3 / 0,6-1,2	NA
Valgancyclovir	NA	5,3-6,7 (±3,5 hrs) / - (900 mg)

*acyclovir is 24 hours stable at 5 mg/ml Winston et al, 2005, Höglund et al, 2001

Take home messages

- Syndromic approach with multi-parameter detection allows a rapid diagnosis of transient viral infections
- Standardized rtPCR will probably be able to discern latent state from active disease in the near future
- Fast treatment with drugs or neutralizing antibodies is needed for transient infections
- Treat influenza in CKD 5 as CKD 4
- Given the toxicity of antiherpetic drugs TMD is probably needed for dose adjustment in renal failure